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The outstanding problem of finding a simple Muskhelishvili-type integral equation
for stress problems on multiply connected domains is solved. Complex potentials
are represented in a way which allows for the incorporation of cracks and inclu-
sions. Several numerical examples demonstrate the generality and extreme stability
of the approach. The stress field is resolved with a relative error of less than 10−10

on a large, yet simply reproducible, setup with a loaded square plate containing
4096 holes and cracks. Comparison with previous results in the literature indicates
that general-purpose finite-element software may perform better than many special-
purpose codes. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The problem of solving equations of linear elasticity on 2D multiply connected domains
has received attention for almost a century. Early work dealt with formulations of integral
equations and analytical solutions (see the textbooks of Mikhlin [29], Muskhelishvili [30],
and Sokolnikoff [39]). Later work focused more on specialized numerical techniques (see
Refs. [3–6, 18, 27, 43] for recent examples). Parallel to this development there has been a
steady improvement in general-purpose finite-element packages which, among other things,
can solve for stress on multiply connected domains. There has also been progress on fast
solvers for large-scale problems [8].
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Despite the apparent simplicity of the stress problem and the advances mentioned above,
numerical results in the literature are not always correct. There is yet no code which combines
error control, rapid execution, and sufficient flexibility so as to accurately solve for stress
in common setups such as rectangular plates with a large number of cracks, holes, and
inclusions. There may be many reasons for this. Stress fields in corners and around crack tips
have complicated asymptotic shapes. Special basis functions are needed for good resolution.
Further, integral-equation-based approaches are burdened with some confusion regarding
the theory. There are different opinions about what potential representations and equations
are best in different situations. Classic authors [29, 30, 39] recommend an approach based
on the Airy stress function and the Sherman–Lauricella representation. They argue against
the Muskhelishvili representation, despite its efficiency in crack problems. Some modern
authors, too, prefer to work with the Airy stress function and use real or complex variables
and a variety of representations and equations [4, 8, 11, 40, 41]. Others prefer primitive
variables [22, 27, 31] or a mix of variables [3] or techniques [26]. Some authors prefer
hypersingular integral equations [32, 37].

This paper presents a rapid, stable, and flexible algorithm for stress problems on multiply
connected domains. The algorithm is based on a Fredholm second-kind integral equation
derived solely from the Muskhelishvili potential representation. The use of one single
representation increases the flexibility of the code and facilitates the incorporation of fast
solvers. The fact that the unknown quantity is the limit of an analytic function makes the
construction of special corner quadratures easy.

The paper is organized as follows. Section 2 states the stress problem and explains the
Muskhelishvili representation. For brevity, finite and infinite domains are treated in the same
equations. Section 3 lists relations between the integral operators which form the basis of our
scheme. These relations are useful for proving equivalence and uniqueness. Section 4 treats
the exterior stress problem for one hole. We compare different integral equations and prove
our main result—that a simple Muskhelishvili equation can be constructed. Sections 5 and 6
extend the result of Section 4 to encompass several holes, cracks, and inclusions. The paper
ends with Section 7, which gives details about our implementation and presents numerical
results. Section 7 reviews a number of small-scale setups. The reason for studying these
setups was that we wanted to be confident that our code reproduced previous results before
venturing into large-scale examples. As it turned out, some previous results were of poor
quality. We were forced to do several independent tests with commercial finite-element
software to establish correct benchmarks.

2. PROBLEM STATEMENT AND POTENTIAL REPRESENTATION

A finite or infinite, linearly elastic specimen occupies a domain D. The outer boundary
of the specimen, if it exists, is denoted �0 and is given positive (counterclockwise) ori-
entation. Domain D is multiply connected. Inside D there are a number Nh of holes and
a number Nc of cracks. The holes have boundaries � j , j = 1, 2, . . . , Nh, and are given
positive orientations. The cracks are denoted � j , j = Nh + 1, . . . , Nh + Nc. The crack � j

starts at crack tip γ js and ends at crack tip γ je. The union of all boundaries is �. The left
and right sides of � are distinguished with superscripts + and −. The area of the region
enclosed by contour � j is A j . For cracks, it is convenient to choose A j = −π i/2. Traction
(tpr

x , tpr
y ), that is, stress on the boundary, is prescribed at �+

0 in the case of a finite domain.
Stress σ̄ pr is prescribed at infinity in the case of an infinite domain. The holes and the cracks
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are free of stress. The exterior of the domain is denoted D′. In passing, we also treat the
more general problem of a specimen with Ninc elastic inclusions.

Let U (x, y) denote the Airy stress function. Since U (x, y) satisfies the biharmonic equa-
tion everywhere except at �, it can be represented as

U (x, y) = �e{z̄φ(z) + χ(z)}, (1)

where the potentials φ(z) and χ(z) are possibly multivalued analytic functions of the com-
plex variable z = x + iy. In the stress problem, requiring that the displacements be single-
valued (see (12) below) and with certain conditions imposed on the applied external forces
(see (14) and (15) below), φ(z) are χ ′(z) are single-valued, χ ′′(z) is unique, and φ′(z) is
determined up to an imaginary constant in D (see paragraph 40 of Mikhlin [29]). For a
thorough discussion of the complex variable approach to elasticity problems, see Refs. [29,
30, 33, 39]. For now, it is sufficient to observe a few relations that link the complex potentials
to quantities of physical interest. The traction t (z) = tx (z) + i ty(z) along the tangent of a
curve γ is

t (z) = n(z)(z) + n(z)(z) − n(z)z′(z) − n(z)�(z), (2)

where (z) = φ′(z), �(z) = χ ′′(z), and n(z) = nx (z) + iny(z) is the outward unit normal
vector on γ . The components of the stress tensor in the material are

σxx + σyy = 4�e{�(z)}, (3)

σyy − σxx − 2iσxy = 2(z′(z) + �(z)). (4)

A natural starting point for stress problems is to represent the potentials (z) and �(z)
in the form of Cauchy-type integrals

(z) = 1

2π i

∫
�

ρ�(τ) dτ

(τ − z)
+ α

2
, z ∈ D ∪ D′, (5)

�(z) = 1

2π i

∫
�

ρ�(τ) dτ

(τ − z)
− 1

2π i

∫
�0

n̄tpr dτ

(τ − z)
+ β, z ∈ D ∪ D′, (6)

where �(τ) and �(τ) are unknown layer densities on �, and where ρ(τ) is a weight which
on contours is given by

ρ(τ) = 1, τ ∈ � j , j = 0, 1, . . . , Nh, (7)

and on cracks is given by

ρ(τ) = ((τ − γ js)(τ − γ je))
− 1

2 , τ ∈ � j , j = Nh + 1, . . . , Nh + Nc. (8)

In (8) the weight ρ(τ) is the limit from the right (relative to the orientation of the crack) of
the branch given by a branch cut along � j , and

lim
τ→∞ τρ(τ) = 1. (9)
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Further in (5) and (6), tpr = tpr
x + i tpr

y is the prescribed traction at �+
0 in the case of a finite

domain, and the constants α and β are related to the stress at infinity σ̄ pr = (σ pr
xx , σ

pr
yy, σ

pr
xy)

in the case of an infinite domain. Three fundamental stresses are σ̄
pr
I = (1, 0, 0), σ̄

pr
II =

(0, 1, 0), and σ̄
pr
III = (0, 0, 1). They are obtained by choosing α = 1/2 and β = −1/2, α =

1/2 and β = 1/2, and α = 0 and β = i . Note that α always is real and that we have omitted
the argument τ from n(τ ), ρ(τ ), and tpr(τ ) in (5) and (6).

The potential (z), represented as in (5), will not be unique for the stress problem on a
multiply connected domain. As a consequence, we cannot expect integral equations derived
from this representation to have unique solutions. This is discussed in detail in paragraph 40
of Mikhlin [29]. Two things need to be fixed. First, the potential (z) can only be determined
up to an imaginary constant inside each contour. By adding a suitable uniqueness condition,
for example,

Pj
+ = 0, j = 0, 1, . . . , Nh, (10)

where + is the limit of (z) at �+, and where the operator Pj is a mapping from � j to
R, defined by

Pj f = − 1

2A j
�e

{∫
� j

f (τ )τ̄ dτ

}
, j = 0, 1, . . . , Nh, (11)

this indeterminacy is removed. Second, the representation (5) for (z) may allow an ar-
bitrary term corresponding to a multivalued φ(z) and to multivalued displacements. By
requiring

Q jρ� = 0, j = 0, 1, . . . , Nh + Nc, (12)

where Q j is a mapping from � j to C, defined by

Q j f = − 1

2A j

∫
� j

f (τ ) dτ, (13)

in combination with which the applied load satisfies

Pj n̄tpr = 0, j = 0, 1, . . . , Nh + Nc, (14)

Q j n̄tpr = 0, j = 0, 1, . . . , Nh + Nc, (15)

we ensure that (z) has no simple pole inside � j , that φ(z) is single-valued, that displace-
ments are single-valued, and that the stress problem has a unique solution in terms of (z)
and �(z).

The representations for (z) and �(z) of (5) and (6) guarantee that the equations of
elasticity are satisfied everywhere in D ∪ D′. The representations also satisfy the boundary
conditions at infinity for an infinite domain. It remains only to find �(τ) and �(τ), which
satisfies the uniqueness conditions (10) and (12) and the boundary conditions at the holes
and at the cracks

t (z) = 0, z ∈ �−
j , j = 1, 2, . . . , Nh + Nc, (16)

t (z) = 0, z ∈ �+
j , j = 1, 2, . . . , Nh + Nc, (17)
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and for a finite domain also

t (z) = 0, z ∈ �−
0 , (18)

t (z) = tpr, z ∈ �+
0 . (19)

If we now demand that the traction jump a quantity tpr as �0 is crossed and that the traction
be continuous as � j , j = 1, 2, . . . , Nh + Nc, is crossed, one can express �(τ) of (6) in
terms of �(τ) of (5). The potential �(z) of (6) assumes the form

�(z) = − 1

2π i

∫
�

ρ�(τ) dτ̄

(τ − z)
− 1

2π i

∫
�

τ̄ρ�(τ) dτ

(τ − z)2
− 1

2π i

∫
�0

n̄tpr dτ

(τ − z)
+ β,

(20)
z ∈ D ∪ D′.

A representation of ψ(z), which is related to (20) by partial integration, is the choice of
Muskhelishvili for stress problems (see paragraph 98 of Ref. [30]).

3. OPERATORS AND RELATIONS

In the following sections we frequently use integral operators M1, M∗
1 , M0

1 , and M3. Here
we define these operators, together with some useful relations involving the operators Pj

and Q j of (11) and (13).
The Cauchy singular operator M1, acting on a function f (z), is given by

M1 f (z) = 1

π i

∫
�

f (τ ) dτ

(τ − z)
, z ∈ �. (21)

The conjugate of M1 is denoted M1. The part of M1 which describes self-interaction, and
which is of interest for cracks, is denoted M∗

1 ,

M∗
1 f (z) = 1

π i

∫
� j

f (τ ) dτ

(τ − z)
, z ∈ � j , j = Nh + 1, . . . , Nh + Nc, (22)

and the compact remainder of M1 is denoted M0
1 ,

M0
1 f (z) = (M1 − M∗

1 ) f (z), z ∈ � j , j = Nh + 1, . . . , Nh + Nc. (23)

The compact operator M3 is given by

M3 f (z) = 1

2π i

[ ∫
�

f (τ ) dτ

(τ − z)
+ n̄

n

∫
�

f (τ ) dτ

(τ̄ − z̄)

+
∫

�

f (τ ) dτ̄

(τ̄ − z̄)
+ n̄

n

∫
�

(τ − z) f (τ ) dτ̄

(τ̄ − z̄)2

]
, z ∈ �. (24)

The operators Pj and Q j satisfy the relations

Pj i = 1, j = 0, 1, . . . , Nh, (25)

Q j i z̄ = 1, j = 0, 1, . . . , Nh, (26)
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Pj M1 f = Pj M3 f, j = 0, 1, . . . , Nh, (27)

Q0 M3 f = −Q0 f −
Nh+Nc∑

j=1

2A j

A0
Q j f, (28)

Q j M1 f = −Q j f, j = 1, 2, . . . , Nh, (29)

Q j M3 f = −Q j f, j = 1, 2, . . . , Nh, (30)

where f is a square integrable function. One can, further, show

P0
n̄

n
M1

n

n̄
f = −P0 f −

Nh+Nc∑
j=1

2A j

A0
Pj f, (31)

Pj
n̄

n
M1

n

n̄
f = −Pj f, j = 1, 2, . . . , Nh, (32)

Q0
n̄

n
M1

n

n̄
f = −Q0 f −

Nh+Nc∑
j=1

2A j

A0
Q j f, (33)

Q j
n̄

n
M1

n

n̄
f = −Q j f, j = 1, 2, . . . , Nh. (34)

On the cracks we have [16]

Q jρ = 1, j = Nh + 1, . . . , Nh + Nc, (35)

Q jρM∗
1 ρ−1 f = 0, j = Nh + 1, . . . , Nh + Nc, (36)

M∗
1 ρM∗

1 ρ−1 f (z) = f (z), z ∈ � j , j = Nh + 1, . . . , Nh + Nc, (37)

M∗
1 ρ−1 M∗

1 ρ f (z) = f (z) − Q jρ f, z ∈ � j , j = Nh + 1, . . . , Nh + Nc. (38)

Finally, we observe that (z)+ can be expressed in terms of M1 as

+(z) = 1

2
(I + M1)�(z) + α

2
, z ∈ �, (39)

and that the uniqueness condition (10) can be written as

Pj (I + M1)� = 0, j = 0, 1, . . . , Nh. (40)

4. ONE HOLE IN AN INFINITE DOMAIN

Let us first consider one hole in an infinite domain. There certainly exist classical integral
equations for this problem. The most famous may be the Sherman–Lauricella equation,
based on the potentials φ(z) and ψ(z) (see paragraph 56 of Mikhlin [29]). The Sherman–
Lauricella equation does not satisfy (17) and (18). It also has three undesirable properties.
First, it involves the arbitrary placement of points, which affects its stability (see Fig. 2 of
[8, 13]). Second, it cannot easily be extended to setups involving cracks and inclusions.
Third, it solves for an unknown density which is related to φ(z) on � via the Cauchy singular
operator M1. This may complicate postprocessing [25]. In this section we derive more
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flexible and efficient integral equations for the hole problem, based on the representations
(5) and (20) for (z) and �(z). The unknown density is the limiting value of (z) on �

itself. The representations (5) and (20) have previously, and successfully, been used in other
elastostatic contexts [13, 14, 16, 40]. In Sections 5 and 6 we extend their use further.

4.1. A Straightforward Integral Equation

Starting with the representations (5) and (20) for (z) and �(z), we demand that the
traction on � be zero so that the conditions (16) and (17) hold. This leads to the integral
equation

(M1 − M3)�(z) = n̄

n
β̄ − α, z ∈ �, (41)

which has to be solved along with the uniqueness conditions (12) and (40). This system is
not good for numerics. Equation (41) is of Fredholm’s first kind and it is not obvious how
to implement (12) and (40). We now show that (12), (40), and (41) are equivalent to the
following single integral equation of Fredholm’s second kind,(

I − M1(M3 + i z̄Q1) + i

2
P1(I + M1)

)
�(z) = M1

(
n̄

n
β̄ − α

)
, z ∈ �. (42)

This equation is simply obtained by a linear combination of (12), (40), and (41) and use of
that M1 is its own inverse.

To show equivalence we apply M1 to the left in (42) followed by application of Q1 and
use of (26), (29), and (30). This gives back (12). Application of M1 to the left in (42) and
use of (12) followed by application of P1 and use of (25) and (27) gives back (40). Use of
(12) and (40) and application of M1 in (42) gives back (41).

4.2. A Sherman Bimaterial-Type Integral Equation

It is shown in Section 7.2 that (42) can lead to very stable numerical algorithms. One
drawback is that (42) contains the composition of M1 with M3. If the integral equation
is discretized and solved iteratively, each iteration step will involve two matrix–vector
multiplications. In this section we derive an integral equation which is free from this problem.
The treatment closely follows Sherman [38] (see also Refs. [9, 16, 40]).

Assume that the hole is replaced by an elastic inclusion. The infinite domain D has elastic
bulk and shear moduli κ1 and µ1. The inclusion D′ has moduli κ2 and µ2. Sherman [38]
derived an integral equation for this problem based on continuity of the integral of traction
and of the displacement at �, and on a representation for φ(z) and ψ(z) related to our
representations (5) and (20) for (z) and �(z) by partial integration. For our density �(z),
Sherman’s equation reads

(I + d1 M1 + d2 M3)�(z) = −d1α − d2
n̄

n
β̄, z ∈ �, (43)

where the bimaterial parameters d1 and d2 are given by

d1 =
(

1

κ2
− 1

κ1

) / (
1

µ2
+ 1

κ2
+ 1

µ1
+ 1

κ1

)
, (44)
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d2 =
(

1

µ2
− 1

µ1

) / (
1

µ2
+ 1

κ2
+ 1

µ1
+ 1

κ1

)
. (45)

It is easy to see that the solution �(τ) to (43) satisfies a uniqueness condition similar to
(40), namely

P1(I + (d1 + d2)M1)� = 0, (46)

and that the uniqueness condition (12) is satisfied for d1 + d2 �= 1.
Let now κ2 and µ2 approach zero in such a way that their ratio is constant. The inclusion

has become a hole. We get

d1 = µ2

µ2 + κ2
, (47)

d2 = κ2

µ2 + κ2
(48)

and observe that d1 + d2 = 1. The uniqueness condition (46) is now the same as (40). The
uniqueness condition (12) is no longer satisfied. We therefore replace (43) with

(I + d1 M1 + d2 M3 + i z̄Q1)�(z) = −d1α − d2
n̄

n
β̄, z ∈ �, (49)

which can be used both for elastic inclusions and for holes. Application of Q1 to the left in
(49) and use of (29) and (30) shows that (49) is the same as (43) and (12). Note that d1 is
a free parameter. Numerical experiments indicate that the quality of the solution to (49) is
rather insensitive to the choice of d1. The choice d1 = 0.25 seems to be generally good.

An advantage a (49) over Sherman’s original equation [38] is that (49) is based on the
potentials (z) and �(z), simply related to stress via (3) and (4), while Sherman’s original
equation is based on the potentials φ(z) and φ(z), related to stress via differentiation.
We prefer (49) since stress is a quantity of more fundamental interest than displacement
in fracture mechanics, and since differentiation is an ill-conditioned numerical operation.
Should we wish to obtain displacements, we could always use integration, which is a well-
conditioned numerical operation.

4.3. Muskhelishvili-Type Integral Equations

The solution �(z) to (42) and to (49) corresponds, because of (10) and (17), to a (z)
which is zero inside the hole D′. Jump relations in (5) give

(I + M1)�(z) = −α, z ∈ �, (50)

(I − M1)�(z) = −2−(z) + α, z ∈ �. (51)

We see, by adding these equations, that �(z) is minus the outside limit of the analytic
function (z) on �. One can therefore view (42) and (49) as integral equations for (z).

Fredholm’s second-kind integral equations with (z) on � as the unknown variable, with
simple (not composed) compact operators on the left-hand side, and with possibly singular
operators on the right-hand side are known as “Muskhelishvili equations.” An example is
(56), below, for the interior stress problem. Muskhelishvili equations are useful. They solve
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for the unknown (z), which is directly related to quantities of physical interest, such as the
hydrostatic pressure of (3). Furthermore, on polygonal domains, they allow the construction
of special corner quadratures [14]. The stress in corners has nontrivial asymptotic behavior,
which is remarkably simple to express for (z), [14, 42].

Muskhelishvili equations are considered difficult to construct and to analyze on multiply
connected domains. They are therefore not recommended in the classic literature (see p. 398
of Muskhelishvili [30], p. 314 of Sokolnikoff [39], p. 249 and p. 255 of Mikhlin [29], and
p. 158 of Parton and Perlin [33]). To illustrate the problem, consider again (41). It is tempt-
ing to replace the singular operator M1 in (41) by the use of (50) and in this way, somehow,
obtain a Fredholm equation. Attempts in this direction easily lead to equations with com-
plicated null-spaces, and auxiliary problems may have to be solved. As a consequence, the
representation of �(z) of (20) has been rejected in favor of a representation leading to the
Sherman–Lauricella equation, whose undesirable properties are listed in the first paragraph
of this section.

Perhaps one can say that Sherman’s equation of the form (49), for holes, is a
Muskhelishvili-type equation? One could argue that the presence of M1 on the left-hand
side disqualifies (49) from being of Fredholm’s second kind. On the other hand, we see
in Section 7.2 that the spectrum of (49) is very similar to the spectrum of the Fredholm
second-kind equation (42), and that (49) can be implemented almost as stably and efficiently
as (42). We therefore conclude that (49) replaces both the Sherman–Lauricella equation and
earlier attempts at constructing Muskhelishvili equations.

We now go further and demonstrate that it is possible to derive an equation on multiply
connected domains with holes which shares all the properties of the classic Muskhelishvili
equation for interior problems (56). We rewrite (43) as

(d2(I + M3) + d1(I + M1))�(z) = −d1α − d2
n̄

n
β̄, z ∈ �. (52)

Then we use (50) and (25), divide by d2, and obtain

(
(I + M3) + d1

d2
P1i(I + M1)

)
�(z) = −d1

d2
α − n̄

n
β̄, z ∈ �. (53)

Adding a term as to satisfy (12) and choosing d1/d2 = 1/2 we arrive at

(
I + M3 + 1

2
P1i(I + M1) + i z̄Q1

)
�(z) = −α

2
− n̄

n
β̄, z ∈ �, (54)

which is the main result of this paper. A proof that (54) has a unique solution is given in
the Appendix.

We observe that the left-hand side of (54) can be evaluated without explicitly computing
the action of M1 on �(z). Change of the order of integration gives

P1i M1� = − 1

2A1
�e

{∫
�1

τ̄ dτ

π

∫
�1

�(z) dz

z − τ

}
= 1

2A1
�e

{∫
�1

�(z) dz

π

∫
�1

τ̄ dτ

τ − z

}
.

(55)
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5. SEVERAL HOLES OR INCLUSIONS IN INFINITE AND IN FINITE DOMAINS

Sherman also treats the case of several elastic inclusions in an infinite domain, and in a
finite domain [38] with traction applied at �0. Expressed in our quantity �(z), Sherman’s
equations read

(I − M3 − 2i P0)ρ�(z) = 1

2

(
I − n̄

n
M1

n

n̄

)
n̄tpr, z ∈ �0, (56)

(I + d1 M1 + d2 M3 + i z̄Q j )ρ�(z) = d2

2

n̄

n
M1

n

n̄
n̄tpr − d1α − d2

n̄

n
β̄,

(57)
z ∈ � j , j = 1, 2, . . . , Ninc,

where the last term on the left-hand side of (57) only is necessary for the special case of an
inclusion being a hole, and where the weight ρ(z) of (7) and (8) has been added to prepare
these equations for the incorporation of cracks (see Section 6). With the help of (14), (15),
and (25)–(34) it is easy to verify that the uniqueness conditions (12) and (40) hold for the
solution to (56) and (57).

For the case of inclusions being holes the corresponding Muskhelishvili equation, which
may replace (57), is(

I + M3 + 1

2
Pj i(I + M1) + i z̄Q j

)
ρ�(z) = 1

2

n̄

n
M1

n

n̄
n̄tpr − α

2
− n̄

n
β̄,

(58)
z ∈ � j , j = 1, 2, . . . , Nh.

Remark. Since Sherman [38] does not derive his equations from the potentials (z)
and �(z), but from the potentials φ(z) and ψ(z), he does not have to worry about our
uniqueness condition (12) and he does not use the operators P0 and Q j . Instead, Sherman
introduces other uniqueness conditions related to rigid-body displacements and he takes
care of them using other operators.

6. THE PRESENCE OF CRACKS

It is easy to extend the equations (56)–(58) to include the presence of cracks. Integral
equations for cracks and inclusions (not holes) in an infinite domain, based on the potentials
(z) and �(z) of (5) and (20), have been derived in [16]. Integral equations for cracks (only)
in a finite domain have been derived in [15]. The extra equations are

(
I + M∗

1 ρ−1
(

M0
1 ρ − M3ρ

))
�(z) = −M∗

1 ρ−1 1

2

n̄

n
M1

n

n̄
n̄tpr + M∗

1 ρ−1

(
n̄

n
β̄ − α

)
,

(59)
z ∈ � j , j = Nh + 1, . . . , Nh + Nc.

Application of Q j to the left in (59) and use of (36) shows that the uniqueness condition
(12) holds on the cracks.

7. NUMERICAL EXAMPLES

In this section we solve the integral equations (42), (49), (54), (56), (58), and (59) numer-
ically on a SUN Enterprise workstation and study the convergence of computed quantities
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of physical interest. We cover a wide range of geometries and loads, involving both new
and well-studied setups. We use a Nyström algorithm based on composite Gauss–Legendre
and Gauss–Jacobi quadrature and iterative solutions. Special quadrature based on Williams
basis functions [42] is used in the corners of finite rectangular domains [14]. A few things
can be noted.

• In the examples with holes in an infinite domain we use 16-point Gauss–Legendre
quadrature. In the examples with holes and cracks in finite rectangular domains we use
eight-point quadrature. The reason for lowering the order of the quadrature on rectangular
domains has to do with stability. It is difficult to get higher order quadrature stable in the
corners.

• The order of the Nyström scheme will generally be 16 for holes in an infinite domain.
The implementation of M3 and large parts of M1 is 32nd order, while the implementa-
tion of the Cauchy principal value in M1, acting on an unknown function, is only 16th
order. In (54) the operator M1 is only acting on z̄, which is known analytically and we can
expect full 32nd order convergence. The asymptotic order for holes and cracks in rectan-
gular domains is approximately 7. The order of the scheme is limited by the magnitude
of the smallest omitted Williams exponent [42] in the special quadrature used on corner
panels [14].

• We use a modified uniform mesh on polygonal domains. This means that the outer
boundary is first divided into panels of approximately equal lengths in such a way that corners
are symmetrically placed in panels. Then some panels, neighboring to corner panels, are
made smaller. The reason that we use some a priori refinement is that we aim at very high
accuracy and that the solution in the corners is not smooth (see [14] for details).

• The GMRES solver [36] is used for the system of linear equations. The iterations are
terminated when the relative norm of the residual is as small as it can get. This often means
10−16. The number of iterations needed for convergence, given a geometry and a load, is
almost independent of the number of discretization points. This is typical for discretized
Fredholm integral equations of the second kind.

• The complexity and storage requirement of our implementations for simple geometries
grows as N 2, where N is the total number of discretization points. For the large-scale
computations in Section 7.8 we use the fast multipole method [2, 10, 35], previously used
in elastostatic contexts in Refs. [7–9, 12], and the complexity and the storage requirement
is proportional to N .

• Great care is devoted to avoiding round-off error throughout the code. Compensated
summation [19, 23] is used for inner products and for matrix–vector multiplications when
the fast multipole method is not invoked.

7.1. Earlier Implementations and Tests

Subsets of the integral equations presented above have been implemented and tested by
others and by us. Equation (59), for cracks in an infinite region, has been used for the
computation of stress intensity factors and compared to two previous results for a kinked
crack [16] and one previous result for a setup involving four straight cracks [12]. The
equation has also been used to compute stress intensity factors for spiral-shaped cracks
[16] and effective moduli of a periodic array involving 10,000 randomly oriented cracks
[12]. Equation (43), for an elastic inclusion in an infinite region, was implemented by
Theocaris and Ioakimidis [40] and tested on an elliptic inclusion and compared to an
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analytical solution. Equations (43) and (59) for cracks and inclusions in an infinite region
have been tested on a circular inclusion surrounded by 17 straight cracks [16]. Equation (56)
for a finite domain has been tested on a starfish-shaped region and compared to results
obtained by the Sherman–Lauricella equation [13], and also on rectangular domains with
V-notches and compared to eight previous results [14]. Equations (56) and (59) for one
crack in a finite domain has been tested on a centered crack and compared to 29 previous
results [15].

In all the tests mentioned above, where previous results were available, algorithms based
on our equations showed dramatic improvement in terms of both stability and economy of
points.

7.2. One Hole in an Infinite Domain

Let us first consider a nine-armed starfish-shaped hole in an infinite plane parameterized
by

z(t) = (1 + 0.36 cos 9t)eit , 0 ≤ t < 2π. (60)

The load at infinity is chosen to be σ̄
pr
I = (1, 0, 0); that is, α = 0.5 and β = −0.5. We set

out to compute a quantity qref, which is the L2 norm of the hydrostatic stress on �,

qref =
( ∫

�

(σxx (z) + σyy(z))
2 ds

) 1
2

. (61)

We compare the performance of (42), (49), and (54). Our problem is well-conditioned.
Figure 1 depicts the singular values of the discretized operators in the integral equations. The
condition number C of the corresponding matrices is approximately C(42) = 110, C(49) =
250, and C(54) = 830. A convergence study of the quantity qref of (61) is presented in Fig. 2.
The achievable accuracy is better than machine epsilon times the condition numbers of the
discretized systems. This is so since the condition number of a system matrix is an upper
bound for the condition number of the problem of solving a linear system of equations, and
since the quantity qref computes an average of the solution �(z).

The algorithm based on (42) exhibits the most stable convergence, but it requires the
most computational work per iteration (see Section 4.2). The number of GMRES iterations
required for full convergence at 4000 discretization points is 31. The computational work
per iteration used by algorithms based on (49) and (54) is similar to each other. Computing
the action of M1 on �(z) can be viewed as a part of the process of computing the action of
M3 on �(z). However, the result computed using (54) converges faster but less stably, with
the number of discretization points, than the results computed using (49). This is so since
M1 is not acting on �(z) in (54) and since the discretized system (54) has a higher condition
number than the discretized system (49). The number of GMRES iterations required for
full convergence at 4000 discretization points is 35 with (49) and d1 = 0.25, and 34 with
(54). We conclude that the algorithm based on (42) gives the most stable convergence and
that it requires the most computational work. The algorithm based on (54) converges faster
than the others and requires the least work, but it is least stable. The effects of using the
algorithm based on (49) is somewhere in between.
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FIG. 1. Left, singular values for the discretized operators of the left-hand-side in (42), (49), and (54) for the
geometry of (60); 2080 discretization points were used. The condition numbers for the discretized operators are
C(42) = 110, C(49) = 250, and C(54) = 830.

7.3. One Hole in a Finite Domain

Let us now consider a circular hole of radius R centered in a rectangular plate with a
height of 2h and a width of 2w. Uniform normal traction tpr

y is prescribed at two opposing
sides (see Fig. 3a). A quantity of interest here is the normalized tangential stress σ̂t (z).
For a stress-free hole, one can define σ̂t (z) as the ratio of the trace of the stress tensor
on the hole to the trace of the applied stress tensor. The relation for the present setup
becomes

σ̂t (z) = σxx (z) + σyy(z)

tpr
y

, z ∈ �1. (62)

A stress concentration factor Kt can be defined as the maximum absolute value of the
normalized tangential stress

Kt = max
z∈�1

|σ̂ t (z)|. (63)

The value of Kt for this setup, with R/w = 0.5 and h/w = 1, was computed by Isida
and Sato [21] using a method based on series expansions, and by Nisitani and Chen
[31] using a method based on singular integral equations. The authors report the values
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FIG. 2. Convergence of the quantity qref of (61) for the hole of (60) and the load at infinity σ̄
pr
I .

Equations (42), (49), and (54) are compared. DP, double precision calculations; QP, quadruple precision calcula-
tions. The relative errors are computed with the reference quantity taken as qref = 5.1445778061927687005756,
which is obtained from (54) with 2400, or more, points in quadruple precision. A uniform mesh is used, where all
quadrature panels have equal lengths in terms of the parameter t of (60).

FIG. 3. (a) A hole of radius R centered in a rectangular plate with height 2h and width 2w. A uniaxial stress
is applied at two opposing sides. The remaining two sides are stress-free. A maximum absolute value of the
normalized tangential stress (63) will occur at point A. (b) Four holes of radius R in a square plate with a side
length of 2w. The holes are symmetrically placed on the coordinate axes, a distance d from the origin.
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FIG. 4. Convergence of the stress concentration factor Kt of (63) for a circular hole of radius R = 0.25,
centered in a square plate of unit side length. A uniform uniaxial load applied. The system (56) and (57), and the
system (56) and (58) are compared in double precision arithmetic. The problem is well-conditioned. The relative
errors are computed with a reference value taken as Kt = 6.3886960194568237. A modified uniform mesh is
used, where all quadrature panels have approximately equal lengths.

Kt = 6.3887 and Kt = 6.38869, respectively. Figure 4 compares the performance of the
system (56) and (57) and the system (56) and (58) for this setup. Our computations con-
verged to a value of Kt = 6.3886960194568, which was reached at about 2000 discretization
points. With only 216 points, which corresponds to the coarsest mesh we can use without
violating the rules for the construction of our modified uniform mesh [14], we got Kt =
6.38870 and confirmed the result of the previous authors. This computation took only a few
seconds.

Figure 4 shows that the convergence rate of the algorithm based on the system (56) and
(57) is approximately eighth order. It is controlled by the operator M1 on the left-hand side
of (57). The convergence of the algorithm based on the system (56) and (58) is initially
faster, since M1, thanks to (55), does not have to be evaluated on the left-hand side of
(58). With more than 800 points, the error related to the accuracy of the corner quadrature
dominates. It is seventh order. It is worth mentioning that for the setup of Fig. 3a, the
location of the point z, where the normalized tangential stress has its maximum, is known
in advance and that we arranged the mesh so that a quadrature point was placed there. If we
were to perform the maximization of (63) numerically, the order of both schemes would
decrease.

As for convergence in the GMRES iterative solver, the algorithms based on the two
systems are rather similar. The algorithm based on (56) and (57) requires no more than 30
GMRES iterations for full convergence, while the algorithm based on (56) and (58) requires
no more than 28 iterations, irrespective of the number of discretization points used.
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The value of Kt of the setup in Fig. 3a was also computed for the case R/w = 0.1 and
h/w = 1 by Leung et al. [26], and for the case R/w = 0.5 and h/w = 10 by Chen et al. [4].
Leung et al. [26] used a variety of methods, including a combined finite-element/boundary-
element scheme, and the commercial software BEASY and NASTRAN. The authors ex-
ploited symmetry, used 40 to 100 points for a quarter of the geometry, and arrived at
computed values lying in the range from Kt = 2.889 to Kt = 3.059. With our coarsest
mesh, corresponding to 176 discretization points for the entire geometry, we got the esti-
mate Kt = 3.0860851. Full accuracy was achieved at about 600 points and the converged
value was Kt = 3.0860851670536. Since the discrepancy between our value and those of
Ref. [26] is rather large considering the simple nature of the geometry, we asked Dr. Jonas
Faleskog at the Department of Solid Mechanics, KTH, to do an independent investigation
with the commercial finite-element package ABAQUS. Using biquadratic elements and
24576 degrees of freedom for a quarter of the geometry, Dr. Faleskog obtained the estimate
Kt = 3.0861 ± 0.0001. This computation took about 10 s, the time for mesh generation
not included, and confirmed our result. Chen et al. [4] used a combination of a boundary-
element method and a spectral method and arrived at a value of Kt = 4.32 for their choice of
parameters. The computation relied on up to 96 quadratic boundary elements on an adaptive
mesh and 12 Fourier modes. With 360 discretization points, corresponding to the coarsest
uniform mesh we can construct, we computed the estimate Kt = 4.347. Full accuracy was
achieved at about 2000 points and the converged value was Kt = 4.3475991016650. A
possible explanation for the discrepancy between our results and those of Ref. [4] can be
found in the convergence study in Table 1 of Ref. [4]. This table indicates that 12 Fourier
modes is not enough to guarantee three accurate digits.

7.4. Two Holes in a Finite Domain

One setup studied by Chen et al. [4] involves two equisized holes of radius R/w =
0.5 separated by a distance P/w = 1 in a rectangle with h/w = 10 (see Fig. 5a). The
computations relied on 30 to 60 quadratic elements and 12 to 24 Fourier modes on each
hole. The result converged to Kt = 4.17, which coincides with the estimate of Atsumi [1]
for a specimen with h/w = ∞. We used the algorithm based on the system (56) and (58)
for this setup. A convergence study is presented in Fig. 6. In this problem, the location of the
point z on � where σ̂ t (z) of (62) achieves its maximum is not known in advance, and we have
to interpolate the solution to (56) and (58) in order to find the maximum. The interpolation is
eighth-order accurate. The optimization is done with Newton’s method and safeguarded with
a Golden Section Search. This procedure slows down convergence compared to the case of a
single, centered hole. Still, as can be seen in Fig. 6, with 400 discretization points, we get the
result Kt = 4.17, which confirms the results of the previous investigators. The computations
converge, to a value Kt = 4.16932885412, which is reached at about 6000 points.

Another, simpler setup studied by Chen et al. [4] involves two smaller equisized holes
of radius R/w = 0.25 separated by a distance P/w = 5/6 in a rectangle with h/w =
3.125 (see Fig. 5a). Here the authors compare their own result, Kt = 3.145, with a result,
Kt = 3.139, obtained with the commercial finite-element software ANSYS using 2132
elements, and a result, Kt = 3.345, obtained by Meguid [28] using the finite-element pack-
age SUPERB. With only 272 discretization points we compute the four-digit accurate
answer Kt = 3.147 (see Fig. 6). With 3300, or more, points we get the converged value
Kt = 3.1471561193559.
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FIG. 5. (a) Two symmetrically placed holes of radius R separated by a distance 2P in a rectangular plate
with height 2h and width 2w. A uniaxial stress is applied at two opposing sides. The remaining two sides are
stress-free. (b) Five symmetrically placed holes.

FIG. 6. Convergence of the stress concentration factor Kt of (63) for the setup shown in Fig. 5a. The system (56)
and (58) is used in double precision arithmetic. Stars refer to a setup with smaller holes, given by R/w = 0.25,
P/w = 5/6, and h/w = 3.125; open circles refer to a setup with larger holes, given by R/w = 0.5, P/w =
1, and h/w = 10. The reference values for the two cases are taken as Kt = 3.1471561193558794 and Kt =
4.1693288541234566, respectively. A modified uniform mesh is used.
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TABLE I

Results for the Stress Concentration Factor Kt of (63) for the Most Challenging Setups

of Four Holes in a Square Plate of Woo and Chan [41]

d/Ra Ref. [41] ANSYSb Eqs. (56) and (58) and 320 ptsc Eqs. (56) and (58) best poss.d

2 4.833 4.832 ± 0.001 4.8327 4.8326684347317
2.5 4.332 4.331 ± 0.001 4.332 4.3314395844773
3 4.051 4.050 ± 0.001 4.051 4.0504940219307
3.5 3.814 3.813 ± 0.001 3.814 3.8142986073521
4 3.768 3.769 ± 0.001 3.7694 3.7693606053913
4.5 3.860 3.941 ± 0.001 3.942 3.9414430052749
5 3.905 4.764 ± 0.001 4.765 4.7639166341954

a The plate has side length 2w and the hole radii are R/w = 0.15. The holes are placed on the coordinate
axes a distance d from the origin.

b Refers to finite-element computations.
c Results from (56) and (58) using only 320 discretization points.
d Best possible results in double precision arithmetic from (56) and (58).

7.5. Four Holes in a Finite Domain

Woo and Chan [41] studied 28 setups of square plates centered at the origin and aligned
with the coordinate axes of a cartesian coordinate system. The plates had side lengths of
2w and contained four small holes with radii varying from R/w = 0.01 to R/w = 0.15.
The hole centers were placed at the four points (d, 0), (0, d), (−d, 0), and (0, −d), where
d varied between d/R = 2 and d/R = 5. The applied load was uniaxial (see Fig. 3b). A
collocation method based on series expansions for the potentials (z) and �(z), adaptive
placement of the collocation points, and least-squares approximation was used. The number
of degrees of freedom used corresponded to 320 for the entire geometry. Results for Kt of
(63) were presented to four digit in the authors’ Table 2.

We checked all 28 results for Kt of Woo and Chan [41] against results obtained using
(56) and (58). For 22 setups we confirmed all four digits, for four setups we confirmed
three digits, for one setup we confirmed two digits, and for one setup we did not confirm
a single digit. The discrepancies between our results and those of Woo and Chan [41]
chiefly took place for the most difficult setup with the largest holes (see Table I). The very
large discrepancy for the setup with d/R = 5 deserves some comment. Not only did our
results differ from those of Woo and Chan [41] by 20%. Also, while Woo and Chan [41]
found that the maximum stress concentration occurred on the holes centered around (0, d)
and (0, −d), we found that the maximum occurred at the holes centered around (d, 0) and
(−d, 0). For this reason we decided to perform computations with the commercial finite-
element software ANSYS. We used about 10,000 eight-node quadratic elements of the
type PLANE82 corresponding to about 31,000 discretization points per configuration. The
results of these computations are presented in Table I.

7.6. Five Holes in a Finite Domain

The most complex hole system in a finite rectangular plate that we could find results for
in the literature is the system denoted “condition (III)” by Meguid [28] and Chen et al. [4].
This system involves five small symmetrically aligned holes in a plate with h/w = 3.125.
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TABLE II

Results for the Stress Concentration Factor Kt of (63) of Fig. 5b

R2 = R4
a Ref. [4] BEAM Ref. [4] ANSYS Ref. [28] SUPERB Eqs. (56) and (58)

w/16 3.115 3.110 3.244 3.1191735564212
w/12 3.102 3.095 3.204 3.1069156838874
w/6 2.980 2.974 3.049 2.9969770267129

11w/48 2.792 2.790 2.981 2.8309208646076

a Three radii are fixed: R1/w = R5/w = 0.25 and R3/w = 1/16. Radii R2 and R4 vary.
Separation distances are P1/w = 5/6 and P2/w = 2/6.

The two holes furthest removed from the origin have radii R1/w = R5/w = 0.25. The
hole at the origin has radius R3/w = 1/16. The radii of the remaining two holes are al-
lowed to vary between R2 = R4 = 1/16 and R2 = R4 = 11/48. The separation distances
are P1/w = 5/6 and P2/w = 2/6 (see Fig. 5b). The stress concentration factor for the two
outer holes reported by the previous authors, as well as our new results (see Fig. 7) are sum-
marized in Table II. The mesh is not completely uniform. The spacing between discretization
points is taken four times denser on the holes than on the outer boundary. The reason for

FIG. 7. Convergence of the stress concentration factor Kt of (63) for the five hole setup shown in Fig. 5b.
The system (56) and (58) is used in double precision arithmetic. The plate has a height-to-width ratio of
h/w = 3.125. The two holes furthest removed from the origin have radii R1/w = R5/w = 0.25. The hole
at the origin has radius R3/w = 1/16. The separation distances are P1/w = 5/6 and P2/w = 2/6. x, +, o,
and ∗ refer to radii R2 = R4 = 1/16, R2 = R4 = 1/12, R2 = R4 = 1/6, and R2 = R4 = 11/48. The reference
values are taken as Kt = 3.1191735564211897, Kt = 3.1069156838873726, Kt = 2.9969770267128966, and
Kt = 2.8309208646076457, respectively.
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this a priori refinement is that the holes are much closer to each other than to the outer
boundary.

It can be noted, as shown in Table II, that the newer results of Chen et al. [4] are generally
better than the older results of Meguid [28]. The largest discrepancies are found for the
most difficult case, where R2 = R4 = 11/48. Here the holes are closest to each other.

7.7. Holes and Cracks in a Finite Domain

Let us now consider setups involving equisized holes of radii R and straight cracks of
length 2a. A quantity of particular interest in this context is the complex valued normalized
stress intensity factor F = FI + i FII, which can be computed as

F(γs) = i
√

2

tpr
y

√
a

lim
z→γ js

�(γs)ρ(z)
√

δs(z), z ∈ � j , j = Nh + 1, . . . , Nh + Nc, (64)

F(γe) = − i
√

2

tpr
y

√
a

lim
z→γ je

�(γe)ρ(z)
√

δs(z), z ∈ � j , j = Nh + 1, . . . , Nh + Nc, (65)

where δs(z) is the arclength measured from the closest crack tip.
Woo and Chan [41] studied 23 setups involving two small holes and one small straight

crack in a square plate with side length 2w and centered at the origin. The crack was placed
at the origin and aligned with the x-axis. The two holes were placed opposite each other and
at a distance d from the origin. The angle between a line through the holes and the x-axis
was α (see Fig. 8). The setup was such that a/w = 0.1, d/w = 0.3, R/w = 0.1, and α was
allowed to vary. Numerical results for FI and FII were presented to four or to five digits.

FIG. 8. Two holes of radii R and a crack of length 2a in a square plate with side-length 2w. The distance
from the hole-centers to the origin is d. The angle of a line through the hole centers and the x-axis is α.
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FIG. 9. Convergence of the stress concentration factor Kt of (63) and the normalized stress intensity factor
FI and FII of (64) and (65) for the setup shown in Fig. 8. The system (56), (58), and (59) is used in double
precision arithmetic. The two holes have radii R/w = 0.1. The distance from the origin is d/w = 0.3. The
angle of inclination is α = π/4. The crack has length a/w = 0.1. The reference values were taken as Kt =
3.5220865511473008, FI = 1.2503879831741171, and FII = −0.14416713067935393. The mesh is uniformly
refined. The discretization points are placed four times closer to each other on the cracks and on the holes than on
the outer boundary.

With α = 0 and α = π/2 and with our equations (56), (58), (59), (64), and (65) we
reproduced the results of Woo and Chan [41] for FI to all digits presented in their Table 6.
The value of FII was zero due to the symmetry. For all other values of the angle α we obtained
results for FI and FII that differed significantly from those in Table 6 of Woo and Chan [41].
The mismatch is particularly severe for FII, where we sometimes did not even get the same
sign as Woo and Chan [41]. As an example we took α = π/4. Here Woo and Chan [41]
report FI = 1.2532 and FII = 0.4039 in their Table 6 (and FI = 1.2530 and FII = 0.4045
in their Table 5), while we obtained convergence to FI = 1.2503879831741 and FII =
−0.1441671306794 (see Fig. 9). Again, we performed computations with the commercial
finite-element software ANSYS and about 10,000 eight-node quadratic elements of the
type PLANE82, to validate our code. Near the crack tips, a focused mesh with quarter point
triangular elements was used. The stress intensity factors were obtained through a fit of the
nodal displacements near the crack tip to the asymptotic analytical crack tip solution. The
result from ANSYS was FI = 1.250 ± 0.003 and FII = −0.14 ± 0.01, which indicates that
our code based on (56), (58), and (59) is implemented correctly.

7.8. Large-Scale Computations

In a final example we solve for stress concentration factors Kt and normalized stress
intensity factors FI and FII for some large setups using equations (56), (58), (59), (63), (64),
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FIG. 10. Two setups with holes and cracks. The square plates have side lengths 2w and contain 2m2 circular
holes with radii R = 0.25w/m and 2m2 cracks of length 2a = 0.5w/m. The objects are placed on square grid
with a distance w/m between the closest grid points. The left plate has m = 1 and the right plate has m = 16.

and (65) and the fast multipole method. We choose a simply reproducible setup consisting
of a square plate of side length 2w, with 2m2 equisized circular holes of radii R and 2m2

straight cracks of length 2a. The total number of objects is thus 4m2. The size of the objects
is chosen as R/w = a/w = 0.25/m and the objects are placed on a square grid with a
distance w/m between the closest grid points (see Fig. 10). In particular, we study the
convergence of Kt and the largest value FI and FII with the size of the setup, determined
by the parameter m, and with the number of uniformly placed discretization points, N .

As it turns out, the largest tangential stress and the largest stress intensity factors are
always found on cracks and holes closest to the plate corners. In Table III we show how
these quantities converge with the parameter m. The largest value of m chosen is m = 32,
corresponding to 4096 objects. Figure 11 shows convergence of Kt along with the largest
values of FI and FII for a plate with m = 16, that is, with 1024 objects. As can be seen, the
achievable accuracy for this large-scale computation is about three digits less than in the
examples of the preceding sections. The chief reason for this loss of accuracy is not that our

TABLE III

Results for the Stress Concentration Factor Kt of (63) and Largest Normalized Stress

Intensity Factors FI and FII of (64) and (65) in the Setup of Fig. 10

ma Kt
b FI

b FII
b

1 4.748140332912 1.133105345114 −0.059347687764
2 4.7341318940 1.1442488313 −0.0545599210
4 4.7339636409 1.1441818139 −0.0542844102
8 4.7340021110 1.1441832610 −0.0542907947

16 4.734000002 1.144183308 −0.054290737
32 4.733998851 1.144183030 −0.054290181

a The number of holes and cracks is 4m2.
b Equations (56), (58), and (59) are used with a modified uniform mesh.
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FIG. 11. Convergence of the stress concentration factor Kt of (63) and the largest normalized stress in-
tensity factor FI and FII of (64) and (65) for the setup shown in Fig. 10, with m = 16, corresponding to 1024
holes and cracks. The system (56), (58), and (59) is used in double precision arithmetic and the fast multi-
pole method is used for matrix–vector multiplication. The reference values are taken as Kt = 4.7340000015921,
FI = 1.1441833078687, and FII = −0.054290736731657. The mesh is uniformly refined. About 50 GMRES
iterations are needed for full convergence.

large-scale example is more ill-conditioned than the previous examples but that numerical
cancellation occurs in the fast multipole scheme as differences between positions of the
discretization points are evaluated. In the smaller examples of the preceding sections these
differences were computed with special care.

8. CONCLUSION AND DISCUSSION

We derived the Muskhelishvili-type integral equation (54) for a multiply connected do-
main with a hole. The equation is simple. It does not require the solution of any “auxiliary
problems for some particular types of loadings,” as has been the case for previous equa-
tions of this type (see p. 158 of Ref. [33]). The analysis of the equation seems, in our
opinion, not more complicated than the analysis of the classic Sherman–Lauricella equa-
tion. The difficulty of the analysis of Muskhelishvili-type equations is the reason why the
Sherman–Lauricella should be preferred, according to the authors referenced in Section 4.3.
Undesirable properties of the Sherman-Lauricella equation, avoided in our formulation, are
listed in the first paragraph of Section 4.

Equation (54) is not the only integral equation for multiply connected domains which can
be derived from the Muskhelishvili potential representation. Equations (42) and (49) are
two other examples, each with its own advantages and drawbacks. The reason that we prefer
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(54) over (42) and (49) has to do with speed and convergence. Further, one could construct
modifications of (54) by replacing the operator Pj with some other operator which has the
property (25). The reason that we prefer Pj in (54) has to do with simplicity. The operator
Pj naturally appears in (14) and we want to stick to a small number of operators. While Pj

may not be an optimal choice, we believe it is sufficiently good for our purposes.
It is interesting that it is recommended that crack problems, which involve multiply

connected domains, should be solved with algorithms based on the Muskhelishvili potential
representation (see paragraph 23 in Ref. [33] and Section 6 of Chapter V in Ref. [34]). In
(56), (58), and (59) we unite these results and get a set of equations for bodies containing an
arbitrary number of cracks, holes, and inclusions. These equations have several properties
which are good for numerics, especially in the context of polygonal domains. Here, too,
minor modifications are possible. For example, by changing the uniqueness condition (10),
which is somewhat arbitrarily chosen, alternative equations can be derived. In a series of
small-scale examples we greatly improved on previous benchmarks. It was easy to review
a large number of setups and results, since our algorithm is comparatively flexible. We saw
that commercial finite-element packages often performed better than special-purpose codes
for these simple problems.

Finally, we solved some large but well-conditioned problems. The largest problem studied
involved 4096 objects, on the order of 1000 times more objects than the typical research
paper in this field. A slightly smaller problem was resolved in double precision arithmetic
using 250,000 uniformly placed discretizations points and overresolved with up to 1,550,000
points to demonstrate stability. Naturally, as the number of discretization points increases,
achievable accuracy goes down. As a rule of thumb, we get about 16 − log10 N correct digits,
where N is the number of discretization points needed for resolution. It is our hope that
this paper will encourage more reliable calculations in the field of computational fracture
mechanics. We also believe our work to have relevance for the problem of Stokes flow,
multicomponent fluid flow, and other large-scale multiphase problems in materials science
where similar equations are to be solved [8, 20, 24, 25] and where the Sherman–Lauricella
equation and equations based on primitive variables do not perform to satisfaction unless
preconditioners are used [8, 20].

APPENDIX

We show that the homogeneous equation (54) has no nontrivial solutions. Using relations
in Section 3 and

P1i M3 f = −P1i f, (A.1)

it is easy to show that the homogeneous version of Eq. (54),

(
I + M3 + 1

2
P1i(I + M1) + i z̄Q1

)
�(z) = 0, z ∈ �, (A.2)

is equivalent to the following four equations:

(I + M3)�(z) = 0, z ∈ �, (A.3)

P1i(I + M1)� = 0, (A.4)
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Q1� = 0, (A.5)

P1(I + M1)� = 0. (A.6)

Application of Q1 to the left in (A.2) gives (A.5). Subtraction of (A.5) from (A.2) and
multiplication by i , followed by application of P1, gives (A.4). Subtraction of (A.5) and
(A.4) from (A.2) gives (A.3). Equation (A.6) follows from the application of P1 to (A.3).
A linear combination of (A.3)–(A.5) gives back (A.2).

We focus on (A.3) and show that any nontrivial solution �0(z) to this equation satisfies

(I + M1)�0(z) = c1, z ∈ �, (A.7)

where c1 is a real-valued constant. If c1 is nonzero, this violates (A.4). If c1 is zero, then a
substitution of (A.7) in (A.3) gives that �0(z) must satisfy

(M1 − M3)�0(z) = 0, (A.8)

which is the homogeneous version of (41). Under the uniqueness condition (A.5), there is
only one nontrivial solution to (A.8), namely �0(z) = ic2, where c2 is another real-valued
constant. If c2 is nonzero, this violates (A.6).

It remains to show (A.7). For this we introduce new potentials in D,

∗(z′) = − 1

2π

∫
�

�0(τ ) dτ

(τ − z′)
, z′ ∈ D, (A.9)

and

�∗(z′) = 1

2π

∫
�

�0(τ ) dτ̄

(τ − z′)
+ 1

2π

∫
�

τ̄�0(τ ) dτ

(τ − z′)2
, z′ ∈ D. (A.10)

Taking limits from the inside of D, one can show

lim
z′→z∈�

n∗(z′) + n∗(z′) − n̄z′∗′(z′) − n̄�∗(z′) = in(I + M3)�0(z). (A.11)

Equation (A.11) implies that a solution ∗(z′) to

lim
z′→z∈�

n∗(z′) + n∗(z′) − n̄z∗′(z′) − n̄�∗(z′) = 0 (A.12)

corresponds, via (A.9), to a density �0(z) which is a nontrivial solution to (A.3). According
to paragraph 34 of Muskhelishvili [30], the only solution to (A.11) is ∗(z′) = ic3, where
c3 is another real-valued constant. Taking the limit z′ → z ∈ � from the inside of D in (A.9)
we see that

(I + M1)�0(z) = −2c3, z ∈ �, (A.13)

and with c1 = −2c3 this proves (A.7).
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